The Exercises From Day 2

Tuesday, May 24, 2016

1. Prove:

$$
\begin{aligned}
& S_{1}\left(\left(X_{0}, X_{1}\right) ;\left(Y_{0}, Y_{1}\right)\right)=X_{1}+Y_{1}-\frac{1}{p} \sum_{i=1}^{p-1}\binom{p}{i} X_{0}^{i} Y_{0}^{p-i} \\
& P_{1}\left(\left(X_{0}, X_{1}\right) ;\left(Y_{0}, Y_{1}\right)\right)=X_{0}^{p} Y_{1}+X_{1}^{p} Y_{0}+p X_{1} Y_{1} .
\end{aligned}
$$

2. Show that W is a ring of characteristic zero.
3. Show that W is an integral domain.
4. Show that $(1,0,0, \ldots)$ is the multiplicative identity of W.
5. Show that $W\left(\mathbb{F}_{p}\right) \cong \mathbb{Z}_{p}$.
6. Show that $W\left(\mathbb{F}_{p^{n}}\right)$ is the unramified extension of \mathbb{Z}_{p} of degree n.
7. Show that the element $(0,1,0,0 \ldots) \in W$ acts as mult. by p.
8. Show that $p^{n} W$ is an ideal of W.
9. Let $W_{n}=\left(w_{0}, w_{1}, \ldots, w_{n-1}\right)$. Show that W_{n} is a ring with operations induced from W.
10. Show that $W / p^{n} W \cong W_{n}$. In particular, $W_{0} \cong k$.
11. Show that $F V=V F=p$ (multiplication by p).
12. Show that F, V both act freely on W, only F acts transitively.
13. Show that if $w \in p^{n} W$ then $F w, V w \in p^{n} W$. Thus, F and V make sense on W_{n} as well.
14. Show that W_{n} is annihilated by V^{n+1}.
15. Show that any $w=\left(w_{0}, w_{1}, w_{2}, \ldots\right) \in W$ decomposes as

$$
\left(w_{0}, w_{1}, w_{2}, \ldots\right)=\sum_{i=0}^{\infty} p^{i}\left(w_{i}^{p^{-i}}, 0,0, \ldots\right)
$$

16. Show that the N picked such that $V^{N+1} M=0$ in the Dieudonné module need not be minimal.
17. Let M be a Dieudonné module. Show that $T_{0}=0$.
18. Let $M=D_{*}(H)=k x$. Prove H is generated as a k-algebra by t, where $t=T_{x}$.

For the next five problems, let $M=E /\left(F^{m}, V^{n}\right)=D_{*}(H)$.
19. What is $p M$?
20. Exhibit a k-basis for M.
21. Prove that

$$
H=k\left[t_{1}, \ldots, t_{n}\right] /\left(t_{1}^{p^{m}}, \ldots, t_{n}^{p^{m}}\right)
$$

22. Write out the comultiplication (in terms of Witt vector addition).
23. Show that $\operatorname{Spec}(H)=W_{n}^{m}$.

For the next four problems, write out the Hopf algebra for each of the following. Be as explicit as you can.
24. $M=E /\left(F^{2}, F-V\right)$
25. $M=E / E\left(F^{2}, V^{2}\right)$
26. $M=E / E\left(F^{2}, p, V^{2}\right)$
27. $M=E x+E y, F^{4} x=0, F^{3} y=0, V x=F^{2} y, V^{2} x=0, V y=0$.

For the next three problems, find the Dieudonné module for each of the following.
28. $H=k[t] /\left(t^{p^{4}}\right)$, t primitive.
29. $H=k\left[t_{1}, t_{2}\right] /\left(t_{1}^{p^{3}}, t_{2}^{p^{2}}\right), t_{1}$ primitive and

$$
\Delta\left(t_{2}\right)=t_{2} \otimes 1+1 \otimes t_{2}+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t_{1}^{p i} \otimes t_{1}^{p(p-i)}
$$

30. $H=k\left[t_{1}, t_{2}\right] /\left(t_{1}^{p^{3}}, t_{2}^{p^{2}}\right), t_{1}$ primitive and

$$
\Delta\left(t_{2}\right)=t_{2} \otimes 1+1 \otimes t_{2}+\sum_{i=1}^{p-1} \frac{1}{i!(p-i)!} t_{1}^{p^{2} i} \otimes t_{1}^{p^{2}(p-i)}
$$

For the final three problems, let $H=\mathbb{F}_{p}[t] /\left(t^{p^{3}}\right), M^{*}=E / E\left(V^{3}, V^{2}-F\right)$
31. Using M^{*}, give the algebra structure for H^{*}. (Hint. It requires two generators.)
32. Using M^{*}, give the coalgebra structure for H^{*}.
33. What changes if $k \neq \mathbb{F}_{p}$?

